
Data Reliability Techniques for Specialized
Storage Environments

Technical Report UCSC-SSRC-09-02
March 17, 2009

Rosie Wacha
rwacha@cs.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DATA RELIABILITY TECHNIQUES FOR SPECIALIZED STORAGE
ENVIRONMENTS

A project submitted in partial satisfaction of the
requirements for the degree of

MASTERS OF SCIENCE

in

COMPUTER SCIENCE

by

Rosie Wacha

December 2008

The project of Rosie Wacha
is approved:

Professor Darrell D. E. Long, Chair

Professor Ethan L. Miller

Acknowledgments

I would like to thank the following people for their help and support: Darrell Long,
Ethan Miller, Thomas Schwarz, Scott Brandt, Gary Grider, James Nunez,John Bent, Ralph
Becker-Szendy, Neerja Bhatnagar, Kevin Greenan, Bo Hong, Bo Adler, Alisa Neeman, Esteban
Molina-Estolano, Valerie Aurora, Julya Wacha, Diane Wacha, and Noah Wacha.

I also want to thank the following organizations for funding my research: UCRe-
gents, Graduate Assistance in Areas of National Need (GAANN), Los AlamosNational Labo-
ratory (LANL), and the Institute for Scalable Scientific Data Management (ISSDM).

ii

Contents

Acknowledgments ii

List of Figures v

List of Tables vi

Abstract vii

1 Introduction 1

2 Synthetic Parallel Applications 3
2.1 Introduction . 3
2.2 Related Work . 4
2.3 How to Create the SPA . 5

2.3.1 Capture Logs of I/O Events at Each Node 5
2.3.2 Create the Event Queue . 6
2.3.3 Barriers . 6
2.3.4 Writing the Parallel Code . 6
2.3.5 Limitations . 7

2.4 Results . 8
2.4.1 Overhead of Strace . 9

2.5 Future Work: Analyzing Traces with Hidden Markov Models 10
2.5.1 Background: Hidden Markov Models 10
2.5.2 Using Hidden Markov Models . 10
2.5.3 Predicting Performance . 12
2.5.4 Determining Bottlenecks . 13
2.5.5 Parallel Accesses . 13
2.5.6 Trace Format . 13

2.6 Conclusion . 14

3 Reliability in Sensor Networks 15
3.1 Introduction . 15
3.2 Issues in Reliability . 16

3.2.1 Redundancy Techniques . 16

iii

3.2.2 Node Choice . 17
3.2.3 Frequency of Integrity Checks . 20

3.3 Optimizations . 21
3.4 Related Work . 21
3.5 Conclusion . 22

4 Parallel Redundant Array of Independent Streams (PRAIS) 23
4.1 Introduction . 23
4.2 Related Work . 23

4.2.1 Row-Diagonal Parity (RDP) . 25
4.3 PRAIS Implementation . 26
4.4 Evaluation . 26
4.5 Conclusion . 27

Bibliography 29

iv

List of Figures

2.1 Event queue events are transferred into the SPA by placing conditionalsaround
the block. 7

2.2 BTIO results; the BTIO application contains a compute and write phase fol-
lowed by a read and verification phase. 8

2.3 MPIIO results; the benchmark is configured to perform a series of writes fol-
lowed by a 10ssleep and another write phase. 9

3.1 XOR1 redundancy method for a 5-node sensor network. 18
3.2 XOR2 redundancy method for a 5-node sensor network. 18
3.3 Markov model, whereλ andµ are the average failure and repair rates, respec-

tively, of exponential distributions. 19
3.4 Data availability ofMirror4, XOR2, XOR1, and no redundancy. 20

4.1 RAID 1 mirrored data layout requires high 2x storage space but goodread per-
formance. Any single failure is tolerated, as well as some multiple failures such
as disks A and C in this example. 24

4.2 RAID 4 and RAID 5 data and parity layouts have a lower storage overhead than
RAID 1, but only tolerate a single failure. The parity distribution of RAID 5
eliminates the parity disk bottleneck. 25

4.3 The Row-Diagonal Parity layout tolerates any two failures. 25
4.4 Example RDP layout with integers for data. For a single failure, reconstruct

using either row or diagonal parity. After a double failure, first reconstruct a
diagonal that only lost one element. Then, reconstruct that row, and repeat this
process for all data and parity elements. 26

4.5 PRAIS architecture. 27
4.6 Performance of initial write of 500MB of data. 28
4.7 Performance of reconstruction of 500MB of data. 28

v

List of Tables

3.1 Energy expenditure of erasure codes in mJ/s and throughput in MB/s. 17
3.2 MTTDL, in hours, forMirror4, XOR1, andXOR2 schemes with and without

repair. 20

vi

Abstract

Data Reliability Techniques for Specialized Storage Environments

by

Rosie Wacha

Data reliability has been extensively studied and techniques such as RAID and erasure
coding are commonly used in storage systems. Real workload data is also important for storage
systems research. We developed a tool to streamline the process of releasing workload data
by automatically removing all non-I/O activity from software. The tool creates a Synthetic
Parallel Application (SPA) that has the same I/O behavior as the original program when it is
run. Next, we address reliability in the context of two specific storage environments, namely
sensor networks and tape archives.

Sensor networks are made up of individual nodes that are highly constrained in power.
Due to reduced storage costs, nodes are increasingly storage-basedand transmitting data to
a base station is reduced in order to conserve power and camouflage the network in hostile
environments. We investigated the tradeoff between power and reliability forstorage-based
sensor networks using Reed-Solomon, XOR-based codes, and mirroring. Results show that
our Reed-Solomon implementation provides higher reliability with more flexibility but with a
higher energy cost. Also, theXOR2 reliability scheme we designed provides reliability close to
that of 4-way mirroring at half the storage space overhead.

Commercial tape drives have high reliability ratings. However, many individual
drives make up an entire archive. In order to achieve good write performance, data is often
written in a striped pattern so that several tape drives are used to store a single file. Thus
reliability is a significant concern and additional reliability techniques are oftenused. We inves-
tigated the performance overhead of row-diagonal parity (RDP) in the context of a large tape
archive. Results show that our parallel implementation scales well for small numbers of nodes,
with twice the initial write bandwidth of data when the stripe size (and number of nodes) is
doubled. Future work will compare the performance of RDP with Reed-Solomonand evaluate
scalability with higher numbers of nodes.

Reliability can be achieved in many ways. The SPA project can help improve storage
reliability by allowing software that normally could only be tested in a single environment to
be run on different hardware setups. Sensor nodes often have very limited power available due
to the locations where they are often deployed. The reliability of data measuredfrom one node
is not always essential, particularly if another nearby node measured thesame data. The choice
of reliability technique for a sensor network must be made in the contex of theseconstraints.
The data stored in tape archives is often never read, but if it is needed itmust be there. We can
sacrafice some extra hardware as long as performance is not significantly lowered. This project
investigates these three areas of reliability.

Chapter 1

Introduction

One of the central requirements for most file systems research is good workload data.
Most of the time this data is contained in a log of I/O requests, known as a trace.Collecting
and releasing traces is not glamorous – file systems researchers typically only do this out of
necessity. No one really wants to collect traces because it is a time consuming process and there
are privacy concerns that must be addressed before the data can be released.

The first part of this project is a tool that simplifies the process of collecting traces
of real parallel applications and releasing them to the public. The basic inputto the tool is a
parallel application that can be run on a cluster. The tool runs the applicationand collects traces
at each node. Then these traces are automatically analyzed to detect all I/Obehavior and a new
program, called a Synthetic Parallel Application (SPA), is written that will perform the same
I/O activities at the same times. All non-I/O behaviors in the trace are ignored and not present
in the SPA. Our results show that I/O traces collected from running the SPA closely match the
original traces.

The second part of this project is an investigation of reliability for two storageenvi-
ronments: sensor networks and tape archives. Good data reliability can be achieved by sim-
ply mirroring data on several disks. More copies of data provide more reliability. However,
the hardware cost quickly grows unmanageable. Particularly in environments where traditional
disks are not used or are only part of the storage system, more sophisticated reliability strategies
are helpful.

Sensor nodes that store their data locally are increasingly being deployedin hostile
and remote environments such as active volcanos and battlefields. Observations gathered in
these environments are often irreplaceable, and must be protected from loss due to node fail-
ures. Nodes may fail individually due to power depletion or hardware/software problems, or
they may suffer correlated failures from localized destructive events such as fire or rock fall.
While many file systems can guard against these events, they do not considerenergy usage in
their approach to redundancy. We examine tradeoffs between energy and reliability in three
contexts: choice of redundancy technique, choice of redundancy nodes, and frequency of ver-
ifying correctness of remotely-stored data. By matching the choice of reliabilitytechniques to
the failure characteristics of sensor networks in hostile and inaccessible environments, we can
build systems that use less energy while providing higher system reliability.

1

Tape drives were invented by IBM in the 1950s [11]. Tape archives are still used
for data that is written once and then rarely read or updated. Fast write performance can be
achieved by writing data in a striped pattern. A very large file is broken up into several chunks
and each chunk is written to a separate tape device. For example, a 128GB filemight be bro-
ken up into 128 chunks where each is written to a tape. The time to write that file would be
the time to write 1GB. Striping like this is actually done on a much larger scale. The problem
is that reliability for that large file is degraded significantly when only striping.If any one of
those 128 tape drives is damaged, that file cannot be reconstructed. Reliability in the context of
such high performance requirements is quite challenging. For example, suppose a 1 GB tape
cartridge is expected to last 30 years [2], which is a mean time between failuresa little above
105 hours. If the entire archive contains 4000 cartridges, we expect to seea failure every day.
In high performance computing the stripe width can be very large, meaning that a single file
may be broken into thousands of pieces and each piece is stored on one devices. A single parity
provides some protection, but with thousands of devices it is not sufficient.We implemented
a software RAID that performs mirroring, RAID 4, and Row-Diagonal Parity (RDP). We mea-
sured the performance of RDP to determine how much processing time is required to compute
two parities.

In summary, we investigated reliability from several points of view in some veryspe-
cific contexts. The first is that of the I/O workload and how it can affect the choice of reliability
method for a storage system. The SPA provides a method for running the I/O subset of pro-
prietary or private code on untrusted hardware. This allows more applications to be used as
benchmarks for new algorithms and can help improve data reliability. Sensor networks typi-
cally have very specific constraints. Some of these are limited power, cheaphardware that is
more likely to fail, and deployment in hostile environments, each of which further increase the
likelihood of node failure. The choice of reliability technique must address theseconstraints
and provide reasonable reliability in creative ways. For example, storing a mirror copy of data
from one node to another far away in the network can protect the data better than storing that
copy at a nearby neighbor. Lastly, tape archives have unusual access patterns and requirements.
Individual hardware components are relatively reliable. In larger systems, components are of-
ten utilized in parallel to improve performance but resulting in a much lower overallsystem
reliability. A large file can be quickly written to tape, but then that file requires all those tape
drives to be functional in order to reconstruct that one file. The performance impact of adding
erasure coding techniques is important and must be addressed to ensure that performance isn’t
degraded to near what it was without striping.

2

Chapter 2

Synthetic Parallel Applications

2.1 Introduction

Workload data is useful for file systems researchers, particularly for simulations of
new algorithms and designs. This data is available in a variety of forms, such as traces and
benchmarks. Traces can be logs of the behavior of the entire file system or as small as a single
application. Traces can be quite large, especially if the application is very long-running or
performs many actions. For this reason, it is difficult to create traces regularly for changing
workloads and applications. Also, both because of their large sizes and theprivate information
contained, they are difficult to share with researchers outside a particular organization.

Benchmarks are used to evaluate a system under a specific load. For convenience,
benchmarks are often used many times to evaluate many different systems since there is a large
cost in designing new appropriate benchmarks. Benchmarks are often designed as synthetic
programs which don’t perform a necessarily useful programmatic function but stress the system
in a specific way to determine certain characteristics of the system, such as peak I/O bandwidth.
While this type of benchmark is useful for comparing systems under specific requirements,
they don’t capture system metrics under “typical” conditions of user applications on a system.
The ideal situation would be if we could release real user applications as benchmarks that then
could be used to compare systems, which is conceptually the goal of the first part of this project.
We created a tool that creates an I/O skeleton program, called a Synthetic Parallel Application,
from a real scientific program. This work was completed while working at LosAlamos National
Laboratory.

The second long-term future goal of this project is to create accurate synthetic I/O
workload models of real workloads. We plan to extract the essential properties of the real I/O
workload into a hidden Markov model. The model will contain access pattern information
and time durations representing the time required to access file segments. These two types
of data will be modified to create new synthetic workloads that represent howthe program
would behave on different systems. The models could be modified and extended to larger
clusters, allowing even greater flexibility and accuracy than is possible using the basic synthetic
applications. This part of the project is proposed work that hasn’t beencompleted.

3

2.2 Related Work

Workload studies are published regularly as previous workloads becomeoutdated
and I/O patterns change [6, 43, 30]. Typically, a sanitized version of thetrace data is released
with these publications so that researchers, as well as storage system developers, can simulate
new I/O system algorithms with realistic access patterns. These types of trace analysis papers
are published infrequently because the amount of work involved in gathering accurate traces,
finding useful information, and removing private data is so high. Perhaps traces would be
published more often if the process of obtaining and sanitizing them was more seamless.

There are several projects that focus on more accurate accurate trace collection and
replay. Buttress [4] deals with timing accuracy for I/O benchmarking and replay. Specifically,
the tracing tool preserves extreme burstiness of asynchronous I/O. This work allows us to create
models from I/O traces that we can expect to be accurate. Aranya et al. [5] implemented Tracefs,
an actual file system that captures traces at the VFS level. Auto-pilot [49] isa framework for
producing accurate, reliable, and informative benchmarking results.

Other work uses I/O tracing and analysis to detect, isolate, and correct problem. Pin-
point [12] uses statistics to correlate components with failed requests to pinpoint the cause of
faults. Magpie [7] is a tool for analyzing workload behavior that detects events and correlates
them by application. Magpie is implemented as a tool that runs online using a low-overhead
event tracker, a request parser which extracts requests from actual event logs, and an event
schema which groups related event types. Triage [27] uses a controllerand adapts to system
and workload changes. Proteus [26] does automatic detection of workloads that contend for cer-
tain resources and uses control theory to schedule requests. Façade[33] improves I/O efficiency
by throttling I/Os to avoid storage device saturation. Black box [3] models systemcomponents
as black boxes. The algorithm can identify an individual node which caused a performance
delay without modifying applications.

Several research projects have looked at the process of getting performance infor-
mation from parallel I/O subsystems. Madhyastha [34] developed an I/O classification system
using Hidden Markov Models (HMMs). The motivation for the project was to classify I/O ac-
cess patterns online in order to make system decisions to improve performance. An individual
HMM is created and trained for each program. There is significant overhead in introducing a
new program but low overhead to run the program multiple times. However, the authors do not
present overhead results in this paper. Event duration times are ignored inthe paper in an effort
to remain platform independent, but this area is listed as future work and is part of the moti-
vation for our research. Mesnier et al. [36] attacked the problem of synchronization of nodes
across a large cluster. This project automatically determines data dependencies between nodes
in I/O traces. Their solution uses a technique called I/O throttling where a single node is slowed
down during replay in order to see which other nodes stop making progress and wait on that
one node. This work does not address other parallel I/O issues such as accurate node clocks or
barrier detection. Hong [24] studied two characteristics of I/O workloads and two techniques
for creating synthetic traces. He verified that disk traffic is self-similar and that ignoring some
long-range dependence does not significantly affect disk behavior.Self-similarity in disk traces
motivates the use of Markov models for I/O modeling. See Section 2.5 for more details.

4

Our work is on the extreme end of simplifying the process of gathering and releasing
traces on clusters. We analyze source code with the goal of removing all sensitive information
that is unrelated to the I/O behavior of the application. The tool is tied to a single programming
language for output code, but could be extended to a more general system. The input can be
any language, since the true input to the tool is a system call trace.

2.3 How to Create the SPA

The purpose of a Synthetic Parallel Application (SPA) is to mimic the I/O of asingle
run of a real application. Note that this is a limitation particularly for nondeterministic pro-
grams, but was chosen for simplicity and to reduce the performance overhead of creating the
SPA. It may possible to extend this work to perform several runs and create the SPA by av-
eraging the timing and I/O data into a single SPA, but this still provides only a singlerun for
performance analysis.

The SPA can be run as a way to measure the I/O requirements of user applications
and our goal is to improve accuracy with respect to timing and data access needs. The Synthetic
Parallel Application is created from system call logs of the original application. The Unix
applicationstraceis used to capture the I/O system calls made at each node that the original
application runs on. The process of creating a SPA involves a few steps thatwill be discussed
in detail in the next sections. First, we capture logs of the I/O events the original application
performed at each node. These logs are analyzed to create a global structure of the program
that does not depend on individual node usage. Lastly, that structureis converted into a real,
runnable, parallel program, which we call the SPA.

2.3.1 Capture Logs of I/O Events at Each Node

The logs are generated by the Unix toolstrace. Strace captures and displays system
calls that are made by an application. Each call log that strace creates is a list of requests made
to the kernel. Strace creates a log at each node the parallel application is running on. The data
in the logs needs to be generalized to get a full representation of the entire parallel program.

The first step in creating the SPA is to create a description of the events of the parallel
application we are modeling. We run the application under strace, carefully ensuring that all
I/O events generated by the application at each node are captured into a log file. We capture and
reproduce the following I/O events:

• open

• close

• read

• write

5

2.3.2 Create the Event Queue

The event queue is an internal representation of all events read from thetrace. Each
I/O event in the event queue contains the following fields:

• Node ID

• Timestamp at start of each event, microsecond accuracy

• Timestamp at end of each event, microsecond accuracy

• Name of event

• Options of event (e.g. file name, file handle, size of I/O)

The system call logs that strace creates contain a low-level representation of I/O
events containing local data that we need to generalize to create a full representation of the
entire parallel program. For example, theopen system call uses the file name of the file to be
opened, but subsequentread, write, andclose system calls are specified by an integral
file handle. These file handles are unique at each node as long as the file remains open. There-
fore, we must track file handles in order to know which I/O events correspond to which files. In
order to track file handles within an strace log, we maintain the set of currently open file handles
matched with their file names.

Before an I/O event is added to the event queue, we verify that the event is sequentially
valid. Sequential validity means that events occur in a realistic sequence. For example, a file
handle cannot be written to before the file is opened. We ignore any eventsthat occur without
the required setup. These types of events are rare and only show up atthe beginning of our
traces. We believe they are MPI-specific files that are opened before strace starts tracing.

2.3.3 Barriers

A barrier in a parallel program forces every node to wait to continue running until
all nodes have reached the barrier. This effectively synchronizes thenodes so that any actions
will begin at roughly the same time. We determined that placing a barrier at the start of the SPA
improved the results of the SPA, but we will need to look into detecting additional barriers in the
original application. This is particularly important for longer running applications. We could
use a heuristic to improve barrier detection in combination with monitoring network traffic.
When MPI has a barrier, the nodes need to synchronize and the notification for all nodes to start
running again should be detectable. By strategically placing barriers in ourSPA, we can better
match the timing of the events in the original application.

2.3.4 Writing the Parallel Code

Creating code from the event queue is a straightforward process because of the careful
way the event queue is constructed. Specifically, all error handling is done before creating the
event queue, and each event is valid sequentially (e.g. no read occurswithout a prior open to the

6

Node Event

0 open f1

1 open f2

if (node 0)

open f1

if (node 1)

open f2

Event Queue

Synthetic

Parallel

Application

Figure 2.1: Event queue events are transferred into the SPA by placing conditionals around the
block.

file). Each event is simply transcribed into the parallel code, with a conditionalto specify the
node that performs that event, as shown in Figure 2.1. The events are ordered the same way as
they were in the original application. It would be possible to reorder events inthe event queue
before processing into code, but that is not the goal of this particular project. Our goal was to
closely mimic the behavior of the scientific application.

2.3.5 Limitations

The SPA generator described has several limitations. Because we only tracea single
run without analyzing source code in any way, we ignore all nondeterminism.An example
of this is parallel make which parallelizes source code building by breaking upcomponents
that don’t depend on each other and executing the builds in parallel. The code compiled on
each node can vary dramatically from one run to the next, depending on how quickly each
component completes and whether or not any nodes are overloaded. One way we could address
this limitation is to perform multiple runs of the program. The first step would be to perform
some basic statistical analysis to verify that certain parallel programs do notexhibit this type of
nondeterminism. In the case of a truly nondeterministic program, the best solution may involve
looking at source code.

Asynchronous I/O is another issue that we did not investigate. Asynchronous I/O
means that the application does not wait for the I/O to complete so that it can immediately
continue running other work. Processing is likely to interleave more fully with I/O because the
process doesn’t have to wait for I/Os to complete before executing more instructions.

Another type of I/O that is not included in the SPA is prefetching. This type ofI/O is
executed automatically by the file system based on previous access patternsand expected future
access. The goal is to preload files from the disk that an application might need in the future in
order to make I/Os more sequential and reduce waiting time in the future. Our SPA will include

7

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160

To
ta

lI
/O

(M
B

)

Time (s)

Cumulative User I/O for BTIO Benchmark

BTIO
SPA

Figure 2.2: BTIO results; the BTIO application contains a compute and write phase followed
by a read and verification phase.

all I/O that was requested by the application, and thus a future run may differdue to lower level
I/O policies. Caching is another aspect of file system behavior that we have not investigated.
Because we trace at the application level, we ignore any lower level disk activities such as
prefetching and caching. We do not detect whether a read is serviced by the disk on-demand or
earlier. The best way to create an accurate SPA in this case would be to turnprefetching off as
much as possible when creating traces of the original application. This will help to make the
timing of I/O events more system independent. The SPA can then be used on the same system
to evaluate different prefetching methods.

2.4 Results

To evaluate the validity of the SPA, we compare the workloads of two original appli-
cations and SPAs generated based on those applications. All programs are run under strace and
the resulting strace output files are analyzed to create SPAs as described inthe previous section.

We ran the tests on a 164 node Linux cluster at Los Alamos National Laboratory. The
first benchmark is the BTIO benchmark [48] from the NAS Parallel Benchmarks version 3.2.1.
The results of this test are in Figure 2.2. We found that for this benchmark,the SPA is able
to match the original application fairly closely. The overall behavior of the SPAmatches, with
a higher slope at 95 seconds where the benchmark switches from calculatingand writing out
results to reading them back for verification.

The second benchmark is the MPI-IO Test benchmark, developed at LANL. The re-

8

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14

To
ta

lI
/O

(M
B

)

Time (s)

Cumulative User I/O for MPIIO Benchmark

MPIIO
SPA

Figure 2.3: MPIIO results; the benchmark is configured to perform a series of writes followed
by a 10s sleep and another write phase.

sults of this test are in Figure 2.3. Because this benchmark ran for a shortperiod of time, the
results show more clearly the differences between the original application andthe SPA. It is not
realistic to expect the I/O timing to match exactly for these two application runs. Evenwhen
running one application twice in a row, the timing will differ slightly due to resource usage
and contention. The important difference that we need to address is that theSPA actually per-
forms I/O at a different rate than the original application. The slope of the original application is
steeper, meaning that I/Os are performed more quickly. This is also slightly visiblein Figure 2.2
where the far right tail of the graph for the SPA extends past the originalBTIO application. We
may analyze this behavior as future work.

2.4.1 Overhead of Strace

Another area of future work is to determine the overhead of strace for some of the
available benchmarks. There is an strace option where you can estimate overhead and ideally
improve the traces by accounting for the overhead in the traces. It would beuseful to try that
technique and see if it results in a lower measured overhead for the application. The strace
option is supposed to amortize the overhead across the entire run of the program, so that the
timestamp of each event is slightly earlier, and the strace more accurately represents a run of
the application without strace.

9

2.5 Future Work: Analyzing Traces with Hidden Markov Models

We have started looking at extending our work to model application I/O behavior
using hidden Markov models (HMMs). The main motivation is that a better representation of
I/O will allow more flexibility in replaying that I/O on future systems. Once we have amodel
that we believe to be accurate, we will be able to modify it in order to create new workloads
based on existing data instead of only matching available workloads.

2.5.1 Background: Hidden Markov Models

A Markov chain is a finite state machine with probabilities associated with the tran-
sitions between states. This means that we have a graph of states or configurations and the
probability of moving from one state to another is known. TheMarkov assumptionis that the
probability of each state and output at that state depends only on the previous state, meaning that
there is no long term history of influence. Hong [24] showed this to be a reasonable assumption
for I/O workload access patterns.

A Markov chain is a model of an event stream where the states visited in the model
are uniquely determined by the output sequence of events. In other words, there is only one
possible Markov chain that can be created from a specific event stream.Creating this type of
model from data is straightforward. The state structure must be chosen ahead of time; this is
the non-automated part of creating the model. Measuring the probabilities is automated in the
following way. Consider the transition from statei to state j. Calculate the total number of
times this transition is taken and divide that by the total number of times transitions are taken
from i to any state (includingj). This gives the probability that statej follows statei. Repeat
this process for all transitions in the model.

Hidden Markov models [41] are a generalization of Markov chains where multiple
states representing the same output symbol are allowed. This allows the property that an HMM
state sequence cannot be uniquely determined based on an output sequence, and thus the state
sequence ishidden. The main challenge in using HMMs is building the set of states that best
represent the output data sequence to be modeled. Several properties of HMMs make them
particularly well suited to the problem of performance prediction.

• Multiple states representing the same visible output. This allows more than one expected
value for the average access time for a particular file segment. For example, the first time
a file segment is accessed, it is likely to take a longer time to fetch it from disk thanthe
second time if it is being accessed from memory. Other possible reasons for varying times
are RAID policy changes or file migration onto a different physical hard drive.

• The Markov assumption greatly simplifies the model by not remembering history. This
may be a limitation on the prediction capability, but simplicity is preferred when possible.

2.5.2 Using Hidden Markov Models

This work addresses the area of benchmarking storage systems. We areinterested in
improving the ability to make performance predictions based on available I/O workload knowl-

10

edge. The basic idea is that by creating a representative model of a workload, we can extrapolate
how that workload would look on other systems.

Consider a scientific application that was built to run on 32 nodes. Suppose we are
interested in the I/O behavior that application would perform if it could instead run on 64 nodes.
Our goal is to create an accurate model of the scientific application from running it on 32 nodes.
With that model, we will extrapolate how the I/O would look if we could run on 64 nodes. These
synthetic workloads should be accurate representations of how the original scientific applica-
tion would behave if it could fully utilize the additional hardware available in the newsetup.
Then we can simulate the performance of the synthetic workload under various I/O systems
algorithm changes, such as caching or prefetching. Note that this solution makes several strong
assumptions. The first is that I/O is the bottleneck of the application and changing the num-
ber of computation nodes will directly impact the size and number of I/O requests. We also
assume good scaling of the application, meaning that the problem being solved can be subdi-
vided in arbitrary ways and has fine granularity. This may not be valid for many applications,
but still provides a useful way to predict I/O behavior even when a similar program would not
realistically solve the same problem.

We will create synthetic workloads based on hidden Markov models (HMM) ofreal
workloads. The models specify read and write events and the duration of thoseevents. The
optimal model will classify an I/O workload in such a way that it can be used to accurately
recreate the same load on the storage system. The model can also be modified to represent
similar workloads of interest, such as increasing the amount of load each compute node places
on the storage subsystem.

Hidden Markov models are Markov models with hidden states, meaning that some
states do not correspond to actual events in the data. These hidden statesallow the model to
capture system behavior that we don’t measure directly because we can’t observe those events
or they are difficult to observe. We leverage previous research [34]which used HMMs to char-
acterize workloads using traces. This work created an HMM for each fileaccessed, where each
state corresponded to a segment of that file. This is implemented as a two dimensional array
where each file segment has a probability of accessing every other file segment. In practice,
many of those probabilities are 0. If a file is only accessed sequentially, thenthe only nonzero
probability is to the next block. In order to reduce memory usage, they consolidate any states
where multiple segments are only accessed sequentially into a single state with a larger segment
size.

Our work will add features to improve the workload accuracy of the model. The first
addition is a measure of time, in order to capture event durations. Using these event durations,
we also plan to determine a way to predict the behavior of a particular workload on a different
system setup.

The HMM will have a few different types of states. The first layer will be states corre-
sponding to file segments. These segments represent the granularity with which I/O requests are
made. We also plan to addwait states to incorporate event durations into our HMM. Event du-
rations can be incorporated into the HMM as separate states. Each file segment(state) will have
a probability distribution for which segment will be next accessed as well as for the duration of
the current state. Since I/O durations are not completely deterministic, we will implement the

11

duration as having an average and standard deviation measured from multiple runs of the same
workload. We will use confidence intervals to get the percentages for each value in a range of
possibilities around the average value. The additional runs will introduce significant overhead
in creating the model, but this step is necessary to add sufficient certainty about the expected
durations on a certain system.

We need multiple states for each observable output because there are multiple ways
to access a file. If a file is accessed sequentially, the state sequence shouldbe different than if
it is accessed randomly. This will be possible by having additional hidden statesequences that
represent different types of access patterns.

With the time of events measured, we hope to determine how to predict how the
workload will change on a new system. For example, if our trace was taken ona 64 node
cluster, we want to predict how different the workload will be when run on a 128 node cluster.
This assumes that the original program will scale with the addition of more nodes.We could
incorporate nonlinear scaling, so that tripling the number of computation nodes would only
produce double the amount of I/O work, for example. In the simplest case, wewill assume
linear scaling of I/O requests in size and frequency.

Here is our basic algorithm for creating an HMM of a workload:

Repeat the following until delay values tend to converge:
Run program to get an I/O trace
For each I/O event in I/O trace:

If (this access and previous access) is unique
Create a new state
Initialize average delay (to delay for this access)
Initialize number of accesses (to 1)

Else (i.e. this access and previous was seen before)
Put delay into average, increment number of accesses

This algorithm was designed in order to improve memory efficiency by not storing
transitions between states that are never taken in practice. Because everyI/O event is added to
the HMM along with its transition, all transitions that have probability greater than zero will
necessarily be present in the model.

2.5.3 Predicting Performance

The goal of this section is to determine viability of a new system setup before acquir-
ing and configuring the actual hardware based on workloads known to be important. The idea is
to have a detailed description of the system in various dimensions, such as number of compute
nodes and hard drives, and run the real workload on some of these dimensions. By keeping
most dimensions fixed and varying a single dimension at a time, we can measure theimpact
of that dimension on workload performance. Maybe there is a machine learning technique that
would apply here.

12

2.5.4 Determining Bottlenecks

One goal of workload analysis is to determine which computer subsystem is the bot-
tleneck of a given application. The bottleneck of any system is clearly an area that should be
focused on when adding new resources.

Consider the following experiment. Run an application with 1 node, 2 nodes, 4 nodes,
and 8 nodes. Plot the I/O performance such as throughput in MB/s, network throughput, and
CPU time. The data plotted should be the left edge of a logarithmic curve. The expected
bottleneck is the curve for which the slope changes the fastest or where the slope is the smallest
first.

2.5.5 Parallel Accesses

Do we want to have separate HMMs for each node and then combine them? Or does
it make more sense to have it combined with the ability to reconstruct individual node behavior?
This depends on whether we are most interested in individual requests or the requirements of
the program as a whole. I tend to think that combining into a single model makes more sense,
so that is what I have chosen for now.

There are some issues that we will address with respect to the parallel programming
model. We will create a single model for the entire program, thus combining parallel thread
behaviors into a single control model. Our model will keep track of whether or not multiple
nodes access the same segment of a file. This will be done by keeping an individual I/O access
count for each CPU node.

2.5.6 Trace Format

The obvious approach is to continue analyzing strace I/O traces. One clear benefit is
the ease in which straces are produced on any Linux-based operating system. One drawback is
that there is overhead associated with running an application under strace.Another drawback
is that there is a limited amount of information available at the system call level. Systemcalls
provide the interface between user-space and kernel-space, thus weare tracing right between
the application and hardware.

It may be desirable to capture traces at a lower level than strace allows in order to get
more detailed information about what the hardware is actually doing when processing requests.
In particular, knowledge about whether a particular file segment is storedin memory would be
useful in predicting the effect of increasing total memory. This might be possible to determine
by tracing the calls to mmap (an optional field for strace), but I have not investigated this ap-
proach in detail. It might be necessary to trace at other levels in order to predict performance
changes with respect to certain hardware.

At a higher level, we also miss some information that would be very useful in mirror-
ing behavior. Specifically, we do not have access to any application logic and algorithms. This
is desirable in the context of producing code that doesn’t contain proprietary information. On
the other hand, it makes it much harder to deduce and replay certain application behaviors such
as barriers.

13

2.6 Conclusion

We implemented a tool that creates synthetic parallel applications from real applica-
tions. The SPA is created from I/O traces of the original application, thus reducing the likelihood
of inadvertently putting any code directly from the original application into the synthetic one.
The tool was shown to work on several benchmarks by creating code thatmimics the I/O from
those benchmarks accurately to the granularity of less than one second.

We have considered many areas for future work. One topic is to look at modeling
application I/O behavior using hidden Markov models. An application model could then be
systematically modified in order to produce more general behavior. For example, the number of
files accessed by the program could be doubled. Even more ambitious changes could be made,
such as modifying the model to require twice as many nodes. This requires certain assumptions
about scalability of the underlying algorithm, but can be quite useful in testing future cluster
and storage requirements.

14

Chapter 3

Reliability in Sensor Networks

3.1 Introduction

The availability of inexpensive gigabyte-scale local storage on sensor nodes [37] and
the high cost of radio operations relative to storage operations are enabling sensor nodes that
store data locally in between data collection events [35]. Storage-based sensor networks are
used to monitor volcanoes, battlefields, habitats, seismic events, traffic, and thestability and
integrity of engineered structures such as buildings and bridges [47, 13]. However, the difficulty
of gathering data from sensor nodes in hostile and inaccessible environments has also made it
harder to deploy base stations that accumulate nodes’ data. Base stations installed with sensor
networks are easily detected in contested land areas such as borders, and are an obvious target
for network disruption. Base stations in inaccessible and natural environments are single points
of failure because they may suffer from power outages or malfunction, causing data loss; in a
volcano-based sensor network, “[f]ailures of the base station infrastructure were a significant
source of network downtime” [47]. Some networks try to avoid this problem by deploying
multiple base stations or specialized storage nodes [46], increasing the both the likelihood of
the detection of the network, and the system cost. Data loss in centrally-controlled sensor
networks is likely to be more severe because nodes do not retain the observations they have
already uploaded to the base station. Moreover, a base station cannot easily transmit data to a
receiver when none is nearby, as is often the case in remote environments.Such environments
are better suited to occasional data collection, requiring nodes to reliably maintain their data
over long periods of time.

Individual sensor nodes typically suffer from relatively high failure rates, as compared
to traditional storage devices. Moreover, sensor nodes are more likely to suffer correlated
failures due to environmental dangers. Individual failures may be causedby battery depletion,
hardware or software errors, or physical damage. In contrast, correlated node failures may be
caused by larger-scale physical damage caused by a destructive event such as flood, rock fall,
or fire. Unfortunately, the latest data from destroyed nodes is often the most valuable because
it may record details of the event, making it even more important for the observations gathered
by the nodes to survive their destruction. However, it is also imperative thatsensor nodes create
and maintain back-up copies of their data without overwhelming their energy budgets.

15

We discuss the tradeoffs between energy and reliability in sensor networks that store
data for long periods of time: weeks to years. These tradeoffs can be made in three separate
areas: redundancy techniques, choice of nodes which store the redundant data, and frequency of
integrity checks on the remotely stored redundant data. We do not expect the energy expenditure
of reliable storage in sensor networks to be less than the energy expended by nodes to upload
their data to a base station; rather, our goal is to make sensor network storage much more reliable
by increasing the likelihood that sensor data survive despite individual and correlated node
failures. By providing energy-efficient storage operations, sensor networks can more easily
provide raw data, instead of aggregated and representative values, totheir intended audience,
potentially facilitating more robust forecast and analysis models.

We assume that the network is comprised of sensor nodes severely constrained in
power, storage, and processing. We also assume that nodes have limited radio range, so com-
munication with distant nodes requires multi-hop routing. Since our research is primarily con-
cerned with energy-reliability tradeoffs, we fold the costs for interference and retransmission
into the cost for transmitting data between nodes. We assume that each node has a battery-
backed RAM for buffering data and NAND flash memory for persistent storage [35], though
new non-volatile memory technologies such as phase change memories may further simplify
the architecture [29].

3.2 Issues in Reliability

Analyzing tradeoffs between energy usage and file system reliability depends on mak-
ing good choices for redundancy techniques, nodes for remote storage,and frequency of check-
ing integrity of redundant data, while considering the high failure rate of sensor nodes and the
likelihood of occurrence of correlated failures [38].

3.2.1 Redundancy Techniques

As with traditional file systems, sensor nodes may use either mirroring or erasure
coding to store data reliably. Transmission costs dominate the energy usage ata node compared
to simply storing the data locally. Transmitting data costs two hundred times more energy[35]
than storing data locally. As a result, due to the relative position of nodes and the base station,
the transmission cost of mirroring data to another node may be lower than that of uploading
data to a base station. This is specifically the case when the transmitting node is in the center
of the network and the base station is installed at the edge of the network, or vice versa. The
storage overhead of mirroring is also very high: toleratingn failures requires the system to store
n+1 copies of the data. In contrast, processing costs dominate energy usage for erasure codes.

We compared the performance (energy consumption expressed in mJ and throughput
expressed in MB/s) of encoding using Reed-Solomon (RS) codes [40] based on GF(28) [20]
to XOR-based codes [50, 22] on an ARM9E 400 MHz processor that consumes 94 mJ/s [1].
The first column in Table 3.1 represents the RS code implementation for parameters (n,m),
wheren is the number of data nodes, andm is the number of parity nodes. RS codes were
implemented as table lookups, where each multiplication requires two lookups. Each lookup

16

Table 3.1: Energy expenditure of erasure codes in mJ/s and throughput inMB/s.

Code Size Energy Expenditure (mJ/s) Throughput (MB/s)
RS XOR RS XOR

(5, 3) 3.515 1.205 2.674 7.798
(6, 2) 3.133 0.6 3 15.654
(9, 3) 4.82 0.524 1.95 17.953
(10, 2) 3.92 0.653 2.4 14.4
(17, 3) 5.193 0.588 1.81 15.99
(18, 2) 4.36 0.589 2.156 15.972
XOR1 — 0.74 — 12.76
XOR2 — 0.75 — 12.72

table is 256 bytes in size, consuming 512 bytes of memory. The second column in Table 3.1
represents the most fault-tolerant XOR-based codes for the same parameters. These codes have
the storage efficiency ofn/(n+m). The last two rows present the performance of highly fault-
tolerate XOR-based codes that we developed. TheXOR1 code we designed is an instance of a
WEAVER code [22] that tolerates two-node failures.

Reed-Solomon codes consume 3–10 times more energy than XOR-based codesdue
to more complex finite field calculations [22, 21] with our implementation, but provide higher
reliability (e.g., a (5,3) RS code can tolerateall three-node failures but an XOR-based(5,3)
code may only be able to tolerate atmostthree-node failures). However, it may be possible to
tolerate some node failures without losing data because very closely-located sensor nodes may
be observing similar phenomena. In order to tolerate correlated failures, closely-located sensor
nodes must spread their information over a large physical area. The energy expenditure ofXOR1

andXOR2 schemes is comparable to most XOR-based codes but better than that for RS codes.
We are currently exploring the suitability of several less processor intensive XOR-based codes,
based on the research done by Wylie and Swaminathan [50], to sensor networks. Future work
will also compare the amount of energy required to transmit data to neighboring nodes with the
computation cost for generating code data. The transmission cost may significantly dominate
the compuation cost such that the code choice is less relevant.

3.2.2 Node Choice

The impact of correlated failures caused by localized damage can be mitigated by
spreading redundant data over a large physical area. However, there is a cost in energy to send
the data further away. Even when the number of nodes in two redundancy groups is the same,
the choice of the layout of nodes significantly impacts both reliability and energy requirements.

Mirroring alone is energy-consuming for making sensor network storagereliable. In
order to reduce energy expenditure, it may be better to mirror data only to nearby nodes and
to use erasure codes for nodes that are further away. This approach can quickly replicate data
nearby, guarding against individual node failure, and can use widespread replication to protect

17

A B C D E

B⊕C C⊕D D⊕E E⊕A A⊕B

Figure 3.1:XOR1 redundancy method for a 5-node sensor network.

A B C D E

B⊕C A⊕D A⊕E A⊕C A⊕B

D⊕E C⊕E B⊕D B⊕E C⊕D

Figure 3.2:XOR2 redundancy method for a 5-node sensor network.

against correlated node failures. Systems such as OceanStore [42] useerasure codes to tolerate
relatively large numbers of failed nodes; we plan to do the same for making sensor network
storage reliable. Our file system has the advantage of using less-expensive XOR-based codes in
place of RS codes by carefully placing redundant data on particular nodes. When using a(5,3)
XOR-based code, by arranging data so that the “fatal” three-node setscover a large physical
area, the sensor network can gain nearly all benefits of RS codes with thecomputational cost
of XOR-based codes. By choosing several nodes located somewhat far from each other, the
system is more safe because they are less likely to suffer correlated failuressimultaneously.
The system could provide additional reliability by choosing some very distant nodes as part of
its redundancy group.

We designed two XOR-based backup layouts which are calledXOR1 andXOR2. In the
XOR1 scheme, each node stores its own data and the XOR of data from two other nodes. The
number corresponds to how many copies are stored as a parity on each othernode. Figure 3.1
shows the 5 node case where nodes and their data are specified by the letters A-E. Each column
represents all data stored at a given node, including redundant data asbackup for other nodes.
Node A stores its own data andB⊕C; node B stores its own data andC⊕D; node C stores
its own data andD⊕E; node D stores its own data andA⊕E; and node E stores its own data

18

1,4 1,3
4λ
μ

0,4 0,3
4λ
μ

μ λ μ λ

1,2
3λ
2μ

0,2
3λ
2μ

μ λ

1,1
2λ
3μ

0,1
2λ
3μ

μ λ

1,0
λ
4μ

0,0
λ
4μ

μ λ

Figure 3.3: Markov model, whereλ andµ are the average failure and repair rates, respectively,
of exponential distributions.

andA⊕B. In theXOR2 scheme, each node stores its own data and data from four other nodes
as two-node XORs. Figure 3.2 shows the same 5 node case where each column represents all
data stored at a given node, including redundant data as backup for other nodes. Node A stores
its own data andB⊕C andD⊕E; node B stores its own data andD⊕E andA⊕C; node C
stores its own data andA⊕E andB⊕D; node D stores its own data andA⊕C andB⊕E;
and node E stores its own data andA⊕B andC⊕D. The storage overhead ofMirror4 is
four times that of the original data set. The storage overhead ofXOR1 andXOR2 schemes is,
respectively, two and three times the original data set. Figure 3.4 shows thatXOR2 delivers
availability similar toMirror4, but at a lower overhead.Mirror4 can tolerate at most four
node failures, whileXOR1 andXOR2 schemes can, respectively, tolerate at most two- and three-
node failures. Markov models provide good approximate analysis, but do not work well for
“irregular” XOR codes or for systems that experience correlated failures; these are better suited
to simulation. However, they provide an approximate initial analysis.

We use a simple Markov model to analyze the availability of theMirror4, XOR1,
andXOR2 schemes. Figure 3.3, depicts 4-way mirroring, but can easily be generalized to an
n-node redundancy group. The transitions are exponentially distributed withmean failure rate
λ , and mean repair rateµ. For simplicity, we letρ = λ /µ. Whenρ ≈ 1, this means that failures
are replaced at the same rate that failures occur. On the other hand, if failures are not replaced
as quickly as they occur,ρ ≈ 0. In a real sensor network, we expect replacements to occur
infrequently, so thatρ ≈ 0. State(0,0) represents the failed state.

The availability of a node’s data whenMirror4, XOR1, andXOR2 schemes are used
to create redundancy in the sensor network are given by:

Mirror4 = 1−
ρ5

(1+ρ)5 ,

XOR1 =
10ρ2 +5ρ +1

(ρ +1)5 , and

XOR2 = 1−
5ρ +1

(ρ +1)5 .

19

Table 3.2: MTTDL, in hours, forMirror4, XOR1, andXOR2 schemes with and without repair.
Mirror4 XOR1 XOR2

MTTDL with repair (h) 4.87×1011 2.42×106 6.50×108

MTTDL w/o repair (h) 4932 1692 2772

 0

 0.5

 1

 0 0.5 1

A
v
a
ila

b
ili

ty

ρ = λ / µ

Mirror-4
XOR-2
XOR-1

None

Figure 3.4: Data availability ofMirror4, XOR2, XOR1, and no redundancy.

These availability models are simple and assume that the nodes may be repaired. In the case
of no repair, steady-state does not exist and so the system must be modeled using differential
equations. These equations quickly become unmanageable, and so a better solution would be to
use simulation, which has the additional advantage of being able to model correlated failures.

Modeling mean-time-to-data-loss (MTTDL) is easier, and uses the same transition
matrix that would be used for modeling with differential equations. We assume that both failures
and repairs are exponentially distributed. We solve all these models by building atransition
matrixM, as discussed by Schwarz [44], and computing

MTTDL= −[1,1,1, . . . ,1] ·M−1
· [1,0,0, . . . ,0].

Table 3.2 presents the MTTDL forMirror4, XOR1, andXOR2 schemes, with and without
repairs. For this example we assume that nodes are organized into five-noderedundancy groups
and chooseρ = 5.56×10−3, which assumes that failures occur on average every 3 months and
nodes are repaired, on average, in 12 hours.

3.2.3 Frequency of Integrity Checks

Regardless of the technique used to generate redundancy, each sensor node must pe-
riodically check to ensure that its back-up data is still being stored correctly. If a node replicates

20

its data to distant nodes, then its integrity checks and their responses must alsotravel further,
thereby expending more energy. Moreover, the more frequently a node checks the correctness
of its back-ups, the more energy it expends. Furthermore, additional energyis expended at
the responding node which must generate a signature and transmit it back over multiple hops.
However, in a system where node failure is frequent, it is necessary to detect small problems
before they grow bigger and cause data loss. It may be energy-wise to allow small problems to
become a little bigger, but not fatal, because the energy cost to restore redundancy is sub-linear.
We are currently exploring the energy tradeoffs between more frequent integrity checks with
that of the overall reliability of the system.

We plan to use algebraic signatures [45] to verify the correctness of remotely-stored
redundant data. Although algebraic signatures are not cryptographically secure, they change in
response to small changes in the data from which they are generated. Moreover, they can be
used in conjunction with XOR or RS codes to ensure that a set of returned signatures is consis-
tent. An algebraic signature operation requires a node to calculate a functionon its own piece of
stored redundant data, thereby, generating a small (4–8 byte) signature. When combined, these
signatures obey the same relationship as the data from which they were generated; if the signa-
tures form a valid code word in the XOR or RS scheme, the underlying data is highly likely to
be consistent as well—the chance of agreement with an underlying error isapproximately 2−b

for ab-bit signature.

3.3 Optimizations

We are currently researching several optimizations that can help reduce energy re-
quirements for making sensor network storage reliable. For example, it may bepossible to
piggy-back integrity check messages and responses on other network traffic such as “hello” or
“ack” messages or on other traffic related to updating routing and neighborhood tables. Such
piggy-backing has the potential of reducing transmission cost because integrity check messages
are relatively small and the marginal cost of including additional information in another mes-
sage is minimal. In order to reduce energy expenditure of reliability, some redundancy can be
generated at remote nodes to reduce the total volume of data that must be transmitted over large
distances. Sending all data to a remote node and letting it distribute it to its nearby neighbors
may also be more energy efficient than the originating node distributing its data to all nodes.
Energy expended in transmission can be further reduced by using some of the “routing” nodes
or the intermediate nodes in the path between a source node and its destination back-up node.

3.4 Related Work

Koushanfar,et al. [28] identify computing, storage, communication, sensing, and ac-
tuating as resources and propose backing-up a resource running low with one that is abundantly
available. However, the application software that computes resource availabilitymay itself con-
sume lots of energy. The solutions presented by Kamra,et al. [25] and Lin, et al. [31] are
designed for sink-based network architectures. Although our solution is applicable to both dis-

21

tributed and centrally-controlled networks, we assume a distributed network architecture with-
out a sink. Lin,et al. [32] use decentralized fountain codes to introduce redundancy into the
network. Ghose,et al. [19] present a Resilient Data Centric Storage (R-DCS) scheme to re-
duce energy consumption while increasing resilience to node failures. Schemespresented by
authors [32, 19] require a complete picture of the network. This may not always be possible
with ad hocnetworks [31]. In contrast, we assume nearly homogeneous nodes with no single
point of failure. This assumption may not hold well inad hocnetworks deployed by dropping
nodes from an airplane or artillery shell. Dimakis,et al. [15] use decentralized erasure codes
to reduce latency and unreliability between query times and the time at which data reaches the
data collector. The authors assume a fixed ratio between the number of storage nodes and the
number of nodes that contain original data.

3.5 Conclusion

“Sense and store” sensor networks are gaining popularity due to the recent availabil-
ity of gigabyte-scale local storage on sensor nodes, and because storage operations are more
energy efficient than radio operations. It is important to make the data storedlocally on sensor
nodes reliable because sensor nodes suffer from unusually high failure rates (both individual and
correlated). We discussed three factors that influence energy-reliability tradeoffs—redundancy
techniques, node choice, and frequency of integrity checks. We presented a simple analytical
model for modeling the availability of a node’s data, and are currently exploring these issues
in more detail using simulation-based models. Our research on energy-reliability tradeoffs will
enable long-term reliable storage in sensor nodes and enable their deployment in environments
where frequent data collection is infeasible. We showed that our implementationof Reed-
Solomon provided higher and more flexible reliability at the expense of a higher energy cost.
We also showed thatXOR2 provides reliability close to that of a 4-way mirroring scheme, but at
a much lower storage space overhead. This project [8] was a collaborative effort completed at
UCSC. My significant contributions are the design of theXOR1 andXOR2 reliability schemes,
the Markov models, and the availability equations.

22

Chapter 4

Parallel Redundant Array of Independent
Streams (PRAIS)

4.1 Introduction

Tape drives [11] are well suited for archival storage of data that is infrequently ac-
cessed. Random read access of data has very low performance because the individual tape drive
that contains the data must be loaded and the magnetic tape must be rotated to the location of
the data within the tape. On the other hand, writing data onto tape drives is fast because tape
drives are efficient at sequential data streaming.

When archival data is eventually accessed, the probability that the tape containing the
data has suffered an unrecoverable data loss (either a full or partial failure) is relatively high.
Reliability of enterprise tape drives in the short term is much better than disk drives, but the
large amount of time between accesses leaves a long period of time for the drives to degrade
due to an improper storage room environment including mishandling during physical moves.

An erasure coding system can help protect data against these types of failures by
storing the tape in an array with some redundant data. However, adding redundancy also adds
complexity and can degrade performance. We implemented a parallel algorithm that computes
two parities and simulates a tape archive, though the data is written to disk. We show that our
algorithm scales linearly for small installations.

4.2 Related Work

The performance of writing to a tape archive is crucial, particularly when used as
a backup for a large disk-based storage system. A typical usage case for tape is as a nightly
backup. If it takes longer than all night to copy the data to tape, this method would not be very
useful. Tape archives use striping to improve performance [16, 17]. Data is broken up into
pieces which are written to all tapes sequentially, in a sort of striping pattern across the devices.
This technique greatly improves read and write performance, but at the cost of reliability. If
a file is striped across 128 tape drives, all 128 must accurately retrieve their share of the file

23

Disk

D

D
C3

D
C1

D
C4

D
C2

D
C4

D
C3

D
C1

D
C2

Disk

C

D
A4

D
A4

D
A3

Disk

A

D
A1

D
A2

D
A2

Disk

B

D
A1

D
A3

Figure 4.1: RAID 1 mirrored data layout requires high 2x storage space but good read perfor-
mance. Any single failure is tolerated, as well as some multiple failures such as disks Aand C
in this example.

in order for it to be reconstructed. We look at improving the reliability that is decreased when
using striping.

Storing data in a redundant format is an easy way to improve reliability. This is avery
common technique in disk systems as well. The simplest version is mirroring or higher levels of
replication. Tandem in the 1980s offered reliable computer systems that used apair of mirrored
disks [9]. These types of fault tolerant systems were popular with the banking industry. Cur-
rently, the Google File System (GFS) [18] needs to provide high availability without noticeable
degradation when failures occur and therefore triplicates its chunks. Sincethe storage overhead
of replication is high and since many data centers are not limited by performance, other types of
redundancy generation are important. Mathematically, all types of redundancy can be described
as an erasure correcting code that storesmdata blocks onn disks such that all data is accessible
despite up tok disk failures. For example, a system ofm triplicated disks usesn = 3m disks in
total and can always survive up tok = 2 failures, and often many more.

One well known technique that is often implemented in hardware is RedundantArray
of Independent Disks (RAID) [39], which is a set ofm data devices associated withn parity
devices. RAID level 0 has no parity and is now known as a Just a Bunch OfDisks (JBOD).
Figure 4.1 shows the RAID 1 layout which stores identical data on two disks.Figure 4.2 shows
two layouts which use parity to reduce the storage overhead of storing redundant data. Parity of
several data blocks is calculated by taking the exclusive-or of all data bits. RAID 4 places parity
blocks on a dedicated disk. This presents a bottleneck on the parity disk because the parity disk
must be accessed for every write. In order to remove the bottleneck on thatone disk, parity is
distributed across all disks in the RAID 5 layout.

Early work extended RAID 5 to tolerate multiple disk failures by using additional
parities for data stripes. One of the clear benefits to XOR-based codes is that they are compu-
tationally efficient and easy to understand. Hellerstein et al. [23] presentbinary (XOR-based)
linear codes in a combinatorial framework. Their codes tolerate up to three failures in the gen-
eral case and they suggest that codes tolerating more than three failures would not be useful in
the future. EVENODD[10] is a maximum distance separable (MDS) code with optimal per-
formance, no recursive computations, and tolerates up to two disk failures. MDS codes are

24

stripe

A

D

C

B

disk

4

PC

PA

PD

PB

DD3

DC3

DA3

DB3

disk

3

DD1 DD2

DC2

disk

1

DA2

DB1 DB2

disk

2

DA1

DC1

PA

DC3

DB3

disk

4

DD3

disk

3

DC2

DA3

DD2

PB

DD1

PC

DA2

DB2

disk

2

D PD

DC1

stripe

DA1

B DB1

disk

1

A

C

RAID 4 RAID 5

Figure 4.2: RAID 4 and RAID 5 data and parity layouts have a lower storageoverhead than
RAID 1, but only tolerate a single failure. The parity distribution of RAID 5 eliminates the
parity disk bottleneck.

PS4

PS2

diag.

parity

PS3

PS1

PB

PA

row

parity

PD

PC

DA4

DC4

DB4

disk

4

DD4

disk

3

DC3

DA3

DD3

DB3

DD2

DC2

DA2

DB2

disk

2

D DD1

DC1

stripe

DA1

B DB1

disk

1

A

C

RDP

Figure 4.3: The Row-Diagonal Parity layout tolerates any two failures.

optimally space efficient.

4.2.1 Row-Diagonal Parity (RDP)

Row-Diagonal Parity [14] is an XOR-based code similar to EVENODD but proven
computationally optimal. Figure 4.3 shows the layout of RDP with dedicated parity disks.
This is simpler to understand, but parity can be distributed on all disks as in RAID 5. Each
data segment belongs to one row parity segment and one diagonal parity segment. The diagonal
parity includes data segments and row parity segments if they are included in thediagonal. RDP
protects data against up to two disk failures. We investigated RDP [14] as an erasure coding
method for streams of data. Systems using RAID 4 or other methods with a single parity for
each redundancy group are protected against a single failure. In an archival system with strict
data reliability requirements, it is better to protect against a second failure. Wemeasure the
implications and investigate the tradeoff between additional parities and the effect on reliability
and performance.

Figure 4.4 illustrates an example RDP layout. The numbers on each disk represent

25

!"#$%&%

&%

'%

'%

(%

!"#$%'%

'%

(%

&%

)%

!"#$%(% !"#$%*% +,-%./0"12% !"/3,4/5%./0"12%

'%

*%

&%

&%

6%

(%

7%

(%

'7%

''%

)%

'(%

8%

'6%

&&%

'*%

Figure 4.4: Example RDP layout with integers for data. For a single failure, reconstruct using
either row or diagonal parity. After a double failure, first reconstruct a diagonal that only lost
one element. Then, reconstruct that row, and repeat this process forall data and parity elements.

sample integer data and (for simplicity) the parities are computed with addition rather than
exclusive-or. To show how data is reconstructed after two failures, suppose disks one and two
fail. Notice that the yellow diagonal lost just one block. Thus the yellow blockon disk 1 can
be reconstructed using the remaining blocks in the yellow diagonal parity stripe. Now row
parity can reconstruct the pink block on disk 2 in the bottom row. The rest ofthe reconstruction
follows in the same manner.

4.3 PRAIS Implementation

RDP was implemented in a parallel software scheme using C with Message Passing
Interface (MPI). Figure 4.5 shows the architecture of the software. Each node in the cluster
represents a storage device along with one master node that coordinates error handling. Node 1
is the parity node and either reads parity and sends to another node or receives parity and writes
it out to disk Each other node computes the XORs of data as it is read from disk. The file is
broken up into RDP “sets” where each set is a self-contained box whereall row parities and all
diagonal parities can be computed using that set. In Figure 4.5, the data segment A represents an
entire diagonal parity set with several rows and diagonal parity elements.Each set is allocated
to a node and all parities are computed at that node and then segments are sent to the appropriate
node that will write that segment of data. A larger number of nodes means thatthe stripe width
is larger so that data can be written to disk more quickly and each node does less work.

4.4 Evaluation

Our experiments were run on a 164 node Linux cluster at Los Alamos National Labo-
ratory. The first experiment consists of 500MB of data striped and writtenwith RDP. Figure 4.6
shows the speed of several runs using 8-16 nodes. The work involvedis that each node com-
putes parity and writes data to a disk device and sends data to other nodes. The bandwidth of
the initial write is about 100 MB/s with 8 nodes and 200 MB/s with 16 nodes. As expected,

26

!"#"!"

#"

$"

%"

!" #" !&#"

'()*+,"-"

#"

%"

./)*(0"

!&#"

$&%"

'()*+,"1"

!"

$"

Figure 4.5: PRAIS architecture.

doubling the number of nodes doubles the bandwidth because the work is spread out evently.
The second experiment was to reconstruct missing data after two failures where the

total size of data is 500MB and it is striped and stored with RDP. Figure 4.7 shows the results
of reconstructing data. You can see that the bandwidth is lower than the initial write. This is
because reconstructing two data elements involves first reading all remainingdata, then com-
puting both parities. Bandwidth is approximately 75 MB/s with 8 nodes and 150 MB/swith
16 nodes. This shows that our algorithm scales for small numbers of nodes.

4.5 Conclusion

We completed a parallelized software implementation of RAID 4 and row-diagonal
parity. We showed that our parallel implementation scales well for small numbers of nodes:
doubling the number of nodes doubles the initial write and reconstruction bandwidths. The
motivation of this project is to investigate the tradeoffs of using higher levels of redundancy
than RAID 4 in a tape archive. Future work is to do a more complete evaluation comparing
the performance of our parallel RDP implementation with higher redundancy erasure codes to
determine the cost of tolerating additional failures. We would also like to evaluate thereliability
for a simulated tape archive and compare the actual improvement in reliability provided with
the computational cost. This will help determine how useful this work can be for tape archives
and other applications such as wide area network data movement and disk archives. This project
was completed at the Los Alamos National Laboratory (LANL) during a summer internship in
2004.

27

0!

50!

100!

150!

200!

250!

300!

0! 2! 4! 6! 8! 10! 12! 14! 16! 18!

B
a
n

d
w

id
th

 (
M

B
/s

ec
)!

Number of processors!

Figure 4.6: Performance of initial write of 500MB of data.

0!

50!

100!

150!

200!

250!

300!

0! 2! 4! 6! 8! 10! 12! 14! 16! 18!

B
a
n

d
w

id
th

 (
M

B
/s

ec
)!

Number of processors!

Figure 4.7: Performance of reconstruction of 500MB of data.

28

Bibliography

[1] www.arm.com/products/CPUs/ARM926EJ-S.html.

[2] Sun StorageTek T10000. http://www.sun.com/storagetek/tape_storage/tape_media/t10000/.

[3] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha
Muthitacharoen. Performance debugging for distributed systems of blackboxes. InPro-
ceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP’03), Oc-
tober 2003.

[4] Eric Anderson, Mahesh Kallahalla, Mustafa Uysal, and Ram Swaminathan. Buttress:
A toolkit for flexible and high fidelity I/O benchmarking. InProceedings of the Third
USENIX Conference on File and Storage Technologies, San Francisco, CA, March 2004.

[5] Akshat Aranya, Charles P. Wright, and Erez Zadok. Tracefs: Afile system to trace them
all. In Proceedings of the Third USENIX Conference on File and Storage Technologies,
pages 129–145, San Francisco, CA, April 2004. USENIX.

[6] Mary Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K. Ouster-
hout. Measurements of a distributed file system. InProceedings of the thirteenth ACM
Symposium on Operating Systems Principles, 1991.

[7] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using Magpie for
request extraction and workload modelling. InProceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI), pages 259–272, San Francisco,
CA, December 2004.

[8] Neerja Bhatnagar, Kevin M. Greenan, Rosie Wacha, Ethan L. Miller,and Darrell D. E.
Long. Energy-reliability tradeoffs in sensor network storage. InProceedings of the 5th
Workshop on Embedded Networked Sensors, 2008.

[9] Dina Bitton and Jim Gray. Disk shadowing. InProceedings of the 14th Conference on
Very Large Databases (VLDB), pages 331–338, 1988.

[10] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon. EVENODD: An optimal
scheme for tolerating double disk failures in RAID architectures. InProceedings of the
21st annual international symposium on Computer architecture, pages 245–254, 1994.

29

[11] R. Bradshaw and C. Schroeder. Fifty years of IBM innovation with information storage
on magnetic tape.IBM Journal of Research and Development, 47(4):373–383, July 2003.

[12] Mike Y. Chen, Anthony Accardi, Emre Kıcıman, Dave Patterson, Armando Fox, and Eric
Brewer. Path-based failure and evolution management. InNetworked Systems Design and
Implementation (NSDI), pages 309–322. USENIX, 2004.

[13] Chee-Yee Chong and Srikanta P. Kumar. Sensor Networks: Evolution, Opportunities, and
Challenges. InProc. of the IEEE, volume 91, pages 1247– 1256, 2003.

[14] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James Leong,
and Sunitha Sankar. Row-diagonal parity for double disk failure correction. In Proceed-
ings of the Third USENIX Conference on File and Storage Technologies, 2004.

[15] Alexandros G. Dimakis, Vinod Prabhakaran, and Kannan Ramchandran. Ubiquitous ac-
cess to distributed data in large-scale sensor networks through decentralized erasure codes.
In IPSN ’05: Proceedings of the 4th international symposium on Information processing
in sensor networks, page 15. IEEE Press, 2005.

[16] Ann L. Drapeau and Randy H. Katz. Striped tape arrays. InProceedings of the 12th IEEE
Symposium on Mass Storage Systems, 1993.

[17] Ann L. Drapeau and Randy H. Katz. Striping in large tape libraries. InProceedings of the
1993 ACM/IEEE conference on Supercomputing, pages 378–387, 1993.

[18] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03),
2003.

[19] Abhishek Ghose, Jens Grossklags, and John Chuang. Resilientdata-centric storage in
wireless ad-hoc sensor networks. InProceedings of the 4th International Conference on
Mobile Data Management, pages 45–62. Springer-Verlag, 2003.

[20] Kevin Greenan, Ethan L. Miller, and Thomas Schwarz. Analysis andconstruction of
Galois fields for efficient storage reliability. Technical Report Technical Report UCSC-
SSRC-07-09, University of California, Santa Cruz, 2007.

[21] Kevin M. Greenan, Ethan L. Miller, and Thomas J. E. Schwarz, S.J.Optimizing galois
field arithmetic for diverse processor architectures and applications. InProceedings of the
16th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS 2008), September 2008.

[22] James Lee Hafner. WEAVER codes: Highly fault tolerant erasure codes for storage sys-
tems. InProceedings of the Second USENIX Conference on File and Storage Technologies
(FAST), 2005.

30

[23] Lisa Hellerstein, Garth A. Gibson, Richard M. Karp, Randy H. Katz,and David A. Patter-
son. Coding techniques for handling failures in large disk arrays.Algorithmica, 12:182–
208, 1994.

[24] Bo Hong. Techniques for synthetic I/O workload generation. M.sc. thesis, University of
California at Santa Cruz, September 2002.

[25] Abhinav Kamra, Jon Feldman, Vishal Misra, and Dan Rubenstein. Data persistence for
zero-configuration sensor networks. InACM Special Interest Group on Data Communi-
cations (SIGCOMM), 2006.

[26] Magnus Karlsson and Christos Karamanolis. Non-intrusive performance management for
computer services. InMiddleware 2006, pages 22–41, Melbourne, Australia, November
2006.

[27] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu. Triage:Performance differ-
entiation for storage systems using adaptive control.ACM Transactions on Storage (TOS),
1(4):457–480, 2005.

[28] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli. Fault tolerance techniques
in wireless ad-hoc sensor networks. InProc. of IEEE Sensors, volume 2, pages 1491–
1496, 2002.

[29] S. Lai. Current status of the phase change memory and its future.IEDM Technical Digest,
pages 10.1.1– 10.1.4, 2003.

[30] Andrew Leung, Shankar Pasupathy, Garth Goodson, and EthanL. Miller. Measurement
and analysis of large-scale network file system workloads. InProceedings of the 2008
USENIX Technical Conference, 2008.

[31] Song Lin, Benjamin Arai, and Dimitrios Gunopulos. Reliable hierarchicaldata storage in
sensor networks. In19th Int’l Conf. on Scientific and Statistical Database Mgmt, SSDBM,
pages 26–35, 2007.

[32] Y. Lin, B. Liang, and B. Li. Data persistence in large-scale sensornetworks with decen-
tralized fountain codes. InINFOCOM 2007. 26th IEEE Int’l Conf. on Computer Commu-
nications, pages 1658–1666, 2007.

[33] Christopher R. Lumb, Arif Merchant, and Guillermo A. Alvarez. Façade: Virtual storage
devices with performance guarantees. InProceedings of the Second USENIX Conference
on File and Storage Technologies (FAST), San Francisco, CA, April 2003.

[34] Tara M. Madhyastha and Daniel A. Reed. Input/output access pattern classification using
hidden Markov models. InFifth Workshop on I/O in Parallel and Distributed Systems
(IOPADS), pages 57–67, November 1997.

31

[35] Gaurav Mathur, Peter Desnoyers, Deepak Ganesan, and Prashant Shenoy. Ultra-low power
data storage for sensor networks. InIPSN ’06: Proceedings of the fifth international
conference on Information processing in sensor networks, pages 374–381. ACM, 2006.

[36] Michael P. Mesnier, Matthew Wachs, Raja R. Sambasivan, Julio Lopez, James Hendricks,
Gregory R. Ganger, and David O’Hallaron. //TRACE: Parallel trace replay with approx-
imate causal events. InProceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST), pages 153–167, February 2007.

[37] A. Mitra, A. Banerjee, W. Najjar, D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos.
High-Performance Low Power Sensor Platforms Featuring Gigabyte ScaleStorage. In
IEEE/ACM 3rd Int’l Workshop on Measurement, Modelling, and Perf. Anal. of WSNs,
2005.

[38] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and Srinivasan Seshan. Subtleties in toler-
ating correlated failures in wide-area storage systems. InNetworked Systems Design and
Implementation (NSDI), 2006.

[39] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of
inexpensive disks (RAID). InProceedings of the 1988 ACM SIGMOD International Con-
ference on Management of Data, pages 109–116, 1988.

[40] James S. Plank. A tutorial on Reed-Solomon coding for fault-tolerancein RAID-like
systems.Software, Practice and Experience, 27(9):995–1012, 1997.

[41] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition.Proceedings of the IEEE, 77(2):257–286, 1989.

[42] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and John Ku-
biatowicz. Pond: the OceanStore prototype. InProceedings of the Second USENIX Con-
ference on File and Storage Technologies (FAST), pages 1–14, 2003.

[43] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. A comparison of file system
workloads. InProceedings of the 2000 USENIX Technical Conference, 2000.

[44] Thomas Schwarz.Reliability and Performance of RAID Systems. PhD thesis, Univ. of
California at San Diego, 1994.

[45] Thomas S. J. Schwarz and Ethan L. Miller. Store, forget, and check: Using algebraic
signatures to check remotely administered storage. InICDCS ’06: Proceedings of the
26th IEEE International Conference on Distributed Computing Systems, page 12. IEEE
Computer Society, 2006.

[46] Bo Sheng, Qun Li, and Weizhen Mao. Data storage placement in sensor networks. InACM
International Symposium on Mobile Ad Hoc Networking and Computing, pages 344–355,
2006.

32

[47] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt Welsh. Fi-
delity and yield in a volcano monitoring sensor network. InOSDI ’06: Proceedings
of the 7th symposium on Operating systems design and implementation, pages 381–396.
USENIX Association, 2006.

[48] Parkson Wong and Rob F. Van der Wijngaart. NAS parallel benchmarks I/O version
2.4. Technical Report NAS-03-002, NASA Advanced Supercomputing (NAS) Division
of NASA Ames Research Center, January 2003.

[49] Charles P. Wright, Nikolai Joukov, Devaki Kulkarni, Yevgeniy Miretskiy, and Erez Zadok.
Auto-pilot: A platform for system software benchmarking. InProceedings of the 2005
USENIX Technical Conference, pages 175–188, Anaheim, CA, April 2005.

[50] Jay J. Wylie and Ram Swaminathan. Determining fault tolerance of XOR-based erasure
codes efficiently. InProceedings of the 2007 International Conference on Dependable
Systems and Networks (DSN 2007), 2007.

33

